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Abstract

Emerging extreme-scale architectures present new opportunities for broader scope of simulations as well
as new challenges in algorithms and software to exploit unprecedented levels of parallelism. Composable,
hierarchical solver algorithms and carefully designed portable software are crucial to the success of extreme-
scale simulations, because solver phases often dominate overall simulation time. This paper presents the
PETSc design philogophy and recent advances in the library that enable application scientists to investi-
gate the design space of composable linear, nonlinear, and timestepping solvers. In particular, separation
of the control logic of the algorithms from the computational kernels of the solvers is crucial to allow in-
jecting new hardware-specific computational kernels without having to rewrite the entire solver software
library. Progress in this direction has already begun in PETSc, with new support for pthreads, OpenMP,
and GPUs as a first step toward hardware-independent, high-level control logic for computational kernels.
This multipronged software strategy for composable extreme-scale solvers will help exploit unprecedented
extreme-scale computational power in two important ways: by facilitating the injection of newly developed
scalable algorithms and data structures into fundamental components, and by providing the underlying
foundation for a paradigm shift that raises the level of abstraction from simulation of complex systems to
the design and uncertainty quantification of these systems.
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1. Introduction

A common theme emphasized in recent DOE reports [1–3] is the crucial importance of robust and scal-
able linear, nonlinear, and timestepping solvers for extreme-scale simulations based on partial differential
equations (PDEs) and related modeling, for example, the power grid. The changing landscape of high-
performance computing (HPC) systems (many-core node architectures, hybrid combinations of GPU and
conventional processors, and high node counts) requires continued innovation in mathematical algorithms
and software. Moreover, the unprecedented computing power of emerging architectures presents new oppor-
tunities for simulation of complex systems, including multiphysics [4], multiscale, and ensemble computations
such as quantifying uncertainties and optimal design of these systems.

Power and manufacturing constraints are increasing the cost of memory access relative to floating point
operations, as well as widening the performance gap between naive or unstructured floating point code and
well-optimized code. Increasingly, the relevant metric is “science per watt,” and algorithms must adapt to
maximize this. Over the past decades, algorithmic innovations have provided as many orders of magnitude
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increase in science per watt as have hardware improvements. In order to continue this trend, it is crucial to
adopt the best known algorithms to achieve high performance on cutting-edge architectures. And, in order
to maximize the availability of these algorithms to science, the best implementations must be encapsulated
in reusable libraries.

Recent advances in the Portable, Extensible Toolkit for Scientific computing (PETSc) [5] have substan-
tially improved composability for multilevel, multidomain, multirate, and multiphysics algorithms [6]. These
capabilities enable users to investigate the design space of composable linear, nonlinear, and timestepping
solvers for these more complex simulations, without making premature choices about algorithms and data
structures. The strong encapsulation of the PETSc design facilitates runtime composition of hierarchical
methods without sacrificing the ability to customize problem-specific components [7, 8]. These capabilities
are essential for application codes to evolve over time and to incorporate advances in algorithms for emerging
extreme-scale architectures.

Just as crucial in the push toward extreme-scale computing are recent advances in the PETSc design
that enable leveraging GPUs in all computational solver phases [9] and the hybrid MPI/pthread program-
ming model [10]. These design advances mean that one does not have to forsake the most mathematically
sophisticated, composable hierarchical solvers in order to utilize GPUs and multicore. Rather, the software
logic that supports composable solvers is independent of the computational kernels running on the acceler-
ator hardware, so that one can easily incorporate new kernels, tuned to a particular new hardware, without
rewriting the application or high-level solver library. An overview article in the Encyclopedia of Parallel
Computing [8] gives an introduction to some of the recent design decisions incorporated in PETSc.

We have already made important progress in separating the control logic of the PETSc software from
the computational kernels. As the community transitions away from an MPI-only model for parallelism, this
separation of concerns is crucial because we can avoid a total rewrite of our software base. That is, while good
performance at the exascale will require a major overhaul of the code for computational kernels in PETSc,
the high-level control logic is largely hardware-independent and requires only modest refactoring to adapt
to new hardware. In other words, we will not need to reimplement from scratch the hundreds of linear,
nonlinear, and timestepping solvers encapsulated in PETSc. Of course, an essential complement to new
hardware-specific computational kernels is extending the solver libraries to incorporate new algorithms that
reduce communication and synchronization, as well as new programming models that explicitly acknowledge
data movement and hierarchies of locality. The key point is that our design enables a separation of concerns
for these two fundamental aspects of extreme-scale solvers, thereby making tractable a potentially daunting
transition process.

The remainder of this paper is organized as follows. Section 2 introduces overarching library design goals
and provides a historical perspective. Section 3 explains our approach to composable extreme-scale linear,
nonlinear, and timestepping solvers and provides highlights of recently added capabilities. Section 4 discusses
future directions for exploiting new architectural features and addressing more complex simulations.

2. Historical Perspective

Our work in solver algorithms and software for the implicit solution of PDEs, as encapsulated in PETSc,
began in the early 1990s and has always focused on the largest-scale parallel systems available at the time.
The original goal of PETSc was to develop efficient algebraic solvers and provide the ability to use any
appropriate solver for any suitable set of PDEs. That is, our first goal was to provide a simple and
consistent way for the user to specify the algebraic system (in general, nonlinear and time-dependent)
so that a wide variety of solvers could be explored, thereby enabling application scientists to experiment
with diverse algorithms and implementations without requiring premature commitment to particular data
structures and solvers. The system for specification goes far beyond simply requiring the user to provide the
Jacobian of a nonlinear system in a particular sparse matrix format. Rather, we employ a set of specifications
for how the user-provided code may provide information needed by implicit multilevel and Newton-based
solvers. The specifications are layered, so that if the user code can provide more information or flexibility,
more powerful solvers may then be employed. For example, if the user’s code can evaluate the nonlinear
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functions on a set of meshes, then geometric multigrid may be used to solve the Jacobian system. This
approach is closely related to and inspired by the hypre team’s conceptual interfaces [11].

Our second goal was to provide scalable powerful parallel algebraic solvers suitable for a variety
of physical models. In the early 1990s, these goals were considered naive and impossible. Time has shown
that the solution to the first goal has vastly simplified the solution to the second goal. With the mathematical,
algorithmic, abstract framework that we developed, parallelism for algebraic solvers went from being a
barrier for many scientific applications to being a mere nuisance. In fact, for most new single-physics
PETSc application codes, linear, nonlinear, and timestepping solvers for PDEs “just work” in parallel, with
little user effort.

A third goal of the PETSc design was its extensibility to allow the use of powerful solvers devel-
oped by other groups. Not only does PETSc provide a wide suite of linear, nonlinear, and timestepping
solvers, the library can also directly use linear solvers from hypre [12], SuperLU [13], Trilinos [14], and over
ten other solver packages. This capability has helped promote interoperability among high-performance
numerical software packages and thereby helped end users explore the solver design space, where diverse
and complementary aspects of algorithms naturally are the focus of different researchers throughout the
HPC community. For example, the fusion codes M3D [15], XGC1 [16], and GTC-P [17] can switch among
solvers from PETSc, hypre, and SuperLU Dist at runtime, depending on which solver is most appropriate
for a given simulation. Moreover, scientists can use PETSc infrastructure to introduce their own custom
algorithmic variants that leverage application-specific knowledge.

3. Composable Linear, Nonlinear, and Timestepping Solvers

The main challenges posed by next-generation HPC platforms arise from the fact that future improve-
ments in processor performance will come from multiple cores per processor rather than higher clock fre-
quencies or just from more compute nodes. This circumstance poses a major challenge to the generation
of simulation software written during the “all-MPI” golden age of parallel computing. The difficulties are
compounded by latency and bandwidth effects of nonuniform memory access (NUMA) within a processing
node. Thus, simple OpenMP pragmas for code running within a node will not provide satisfactory perfor-
mance without attention to data affinity (ensuring that data is stored in physical memory that is “close”
to where it will be accessed). In addition to increasing core counts, it is necessary to utilize packed vector
registers and simultaneous threading.

As introduced in Section 1, in PETSc we are addressing these architectural changes with a multipronged
approach of (1) new composable algorithms for linear, nonlinear, and timestepping solvers, which enable the
construction of custom schemes tailored to exploit both hierarchical architectural features and increasingly
complex modeling, and (2) new computational kernels that enable leveraging GPUs in all computational
solver phases [9] and the hybrid MPI/pthread programming model [10]. Section 3.1 provides an overview of
support for composable hierarchical linear solvers. Section 3.2 discusses our approach for nonlinear solvers
and introduces new capabilities for variational inequalities. Section 3.3 discusses advances in integrators for
ordinary differential equations (ODEs) and differential algebraic equations (DAEs).

3.1. Composable Sparse Linear Solvers

During recent years we have extended linear solvers in PETSc to better support coupling between two
or more distinct PDE-based mathematical models for steady-state problems. This research builds on both
the power of PETSc for solving individual PDE-based models and its extensibility, which supports the
composition of multiple solvers. We provide multiphysics algebraic coupling primarily through the new DM

object, which PETSc uses to define suitable decompositions and to provide the algebraic solvers with any
necessary information that might depend on discretization, geometry, and physics, along with the FieldSplit

preconditioner and Nest matrix format, which implement relaxation and factorization splittings with efficient
and flexible storage [6]. Applications using these multiphysics features include lithosphere dynamics [18],
subduction and mantle convection [19–21], ice sheet dynamics [22–24], subsurface reactive flow [25], tokamak
fusion [26, 27], mesoscale materials modeling [28], and power networks [29, 30].
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This recent work can be characterized as a framework for physics-based preconditioners. Thus, instead of
simply handing a sparse matrix off to a black-box linear solver, the user describes the (usually logical block)
structure of the matrix and then “tells” the solver how to compose the outer linear solver based on inner
linear solvers associated with blocks and Schur complements [6]. The locations of the logical blocks of the
matrix are efficiently provided by the PETSc abstract class of index sets (IS), and the composition of the
solvers is handled by the PETSc preconditioner classes: composite, Galerkin, FieldSplit, and multigrid.
These preconditioner classes are containers that manage the composition of simple solvers. For example, the
multigrid container manages the calls to the smoother solver on each level and the calls to the restriction
and interpolation operators. The fieldsplit container manages the calls to solvers on each or appropriate
combinations of the separate fields. The preconditioners are composable, so that, for example, a fieldsplit
solver can be used where each field is separately solved with multigrid when appropriate. Related numerical
software includes pARMS [31] and the Teko package of Trilinos [14].

Index sets and logical blocks of “matrices” in PETSc also can be used with matrix-free linear operators,
where a matrix data structure is not explicitly stored, but rather selected operations (typically matrix-vector
products, as used in Jacobian-free Newton-Krylov methods [32]) are computed by user-provided or library-
provided routines. In that case, “shell” matrices are returned; these can be manipulated and used in the
composition of solvers just as if they were explicitly stored sparse matrices. This capability allows the same
composition infrastructure to be used for both matrix-free and sparse matrix-based simulations, including
probably the most common case, which is a combination of both matrix-free and partially stored matrices.

The innermost kernels of these composed preconditioners determine the overall floating point efficiency
of the solvers. These routines, triangular solves used for ILU, LU, and SOR relaxation, are typically the
most time-consuming parts of (time-dependent, nonlinear) simulations. We recently developed new data
structures and associated software kernels for sparse triangular solves that achieved improvements ranging
from 15 to 60 percent (that is, for some matrices, reducing the triangular solve times by more than half and
the overall simulation time by up to 30 percent) [33].

We have recently begun developing capability for algebraic multigrid (AMG) with implementations of an
unstructured geometric algorithm and a standard smoothed aggregation AMG solver as part of a multilevel
library. Our approach enables new algorithms to be expressed with minimal new code. Fundamental building
blocks, such as matrix-matrix products and a greedy maximal independent set aggregation algorithm, allow
new development to focus specifically on algorithmic content of interest. We have observed good scaling
in the solve phase up to 13K+ cores on the Cray XE6 at NERSC and very good strong scaling on the 2D
Poisson solves from the XGC1 gyrokinetic fusion plasma code. This good strong scaling is achieved with
process aggregation and repartitioning of the coarse grids, which become computational bottlenecks at scale.

Also notable is work with the UNIC project on neutronics for nuclear reactor simulation. The goal of
this work was to reduce the uncertainties and biases in reactor design calculations by progressively replacing
existing multilevel averaging techniques with methods based on highly accurate solutions of the governing
equations. Scalable linear solvers in PETSc enabled the simulation of neutron transport in full reactor
cores [34]. This combination, which has used well over half a trillion unknowns, runs on the latest petascale
DOE machines, including 222,912 cores of Cray XT5 and 294,912 cores of Blue Gene/P. UNIC was a finalist
in the 2009 Gordon Bell Competition at SC09 [35].

3.2. Flexible Nonlinear Solvers

The basic framework for fully implicit nonlinear solvers, including strong model coupling of multiple
nonlinear systems, is (truncated) Newton’s method (see, e.g., [36]), using (possibly matrix-free) Newton-
(Krylov) techniques. The embodiment of Newton’s method in PETSc is the SNES component [5], which
incorporates enormous inherent flexibility in its design. Related software includes the NOX package of
Trilinos [14] and the KINSOL component of SUNDIALS [37]. SNES uses the Newton approach of solving
the nonlinear system using some “approximation” to the Jacobian of the nonlinear function. In PETSc, the
approximation of the Jacobian can be computed in many ways, with default support for (1) provision of
the analytic Jacobian or a simplified Jacobian, (2) efficient explicit computation of the Jacobian entries by
finite differencing of F punq with coloring, (3) “matrix-free” matrix-vector product application [32] of Jpunq
by either differencing of F punq or computer code, or (4) automatic generation of code that computes the
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Jacobian or applies it to a vector via ADIC or ADIFOR [38]. The approximate solution of the linear system,
in PETSc, can be computed in essentially unlimited ways, including the composable approaches introduced
in Section 3.1, which are essential for coupled multiphysics problems. Of particular note is recent work on
hydrodynamics [39, 40] and the subsurface flow code PFLOTRAN [41], which scales up to 40,000 cores on
the Cray XT5 and IBM Blue Gene/P and is motivating new research on composable hierarchical solvers for
extreme-scale systems.

Many applications communities are beginning to develop multiphysics applications that combine codes
for two or more models [4]. The incorporation of matrix-free nonlinear solvers is particularly important for
multiphysics scenarios because this approach eliminates the need to compute the fully coupled Jacobian and
yet still enables Newton’s method to achieve rapid quadratic convergence. While most applications cannot
readily provide full Jacobians of coupled systems, approximations of the various Jacobians for the submodels
are commonly available. Thus, in this context, the term matrix-free means that while there is no explicit
storage of the entire sparse Jacobian matrix, there may be explicit storage of portions of the Jacobian related
to particular subparts of the physics. PETSc also includes new capabilities for composing scalable nonlinear
solvers such as nonlinear GMRES, nonlinear CG, quasi-Newton, and nonlinear multigrid [42].

An important new addition to SNES is comprehensive scalable support for algebraic variational inequal-
ities (VIs), the discrete counterpart to differential variational inequalities (DVIs), which enable the consis-
tent and efficient modeling of transitional phenomena, especially applications involving phase changes, free
boundaries, and hybrid discrete-continuum behavior. DVIs contain two terms: a differential equation and a
generalized algebraic equation represented by complementarity constraints or a box-constrained variational
inequality, for example, 0 ¤ u ¤ 1, that formalizes the concept of switches. Current support includes three
scalable algorithmic approaches for the solution of box-constrained VIs: (1) a reduced space, active set,
gradient projection Newton-based approach similar to that of TRON [43], (2) a semi-smooth solver similar
to PATH [44], and (3) a variant of the reduced space active set method that introduces Lagrange multipliers
to enforce the active constraints instead of removing them from the equations. As with all capabilities of
PETSc, we have provided a suite of algorithms, since no single algorithm is best for all VIs. For example,
if the original simulation has fast solvers (FFT for example) available, the Lagrange multiplier approach
allows their use with VIs, while the other two do not. VI capabilities are an exciting new addition to
the PETSc toolbox, because phase-field models and other problems with bounds on solutions can now be
handled properly without resorting to “cut-off” or “smoothing” functions that damage the approximation
properties of the models [28].

These VI solvers can be used in conjunction with any of the preconditioners that PETSc provides or
can apply, including the composable preconditioning techniques introduced in Section 3.1. For example,
for an Allen-Cahn variational inequality that arises in the phase-field approach to mesoscale modeling of
irradiated materials [28], we can employ a block Schur complement preconditioner with multigrid as a block
solver or invert the roles of the block preconditioner and multigrid and hence run multigrid on the entire
problem using a Schur complement fieldsplit preconditioner as the smoother on each level; runtime options
for dynamically constructing these different block preconditioners are explained in [6].

3.3. ODE and DAE Integrators

We have recently implemented a family of fully implicit general linear methods (GL), fully implicit
generalized α methods, additive Runge-Kutta and Rosenbrock-W IMEX (implicit-explicit, also known as
semi-implicit) methods, and explicit strong stability preserving Runge-Kutta methods. These complement
the existing classical explicit Runge-Kutta and fully implicit methods in the PETSc scalable time integration
component, TS. The user specifies the problem in the same way for all methods, by writing the ODE or
DAE as gpt, u, 9uq � fpt, uq, where g contains the “stiff” terms and f contains only nonstiff terms. Explicit
methods will typically place all terms in f , leaving the default implementation, gpt, u, 9uq � 9u. The linear or
nonlinear problems that arise at each timestep are solved by using the composable infrastructure discussed
in Sections 3.1 and 3.2. If methods that require (approximate) Jacobian information are used, the user also
provides a function to compute the Jacobian of the stiff part of the equation, Jαpt, u, 9uq � Bg{Bu� αBg{B 9u.
Reformulating methods for this flexible interface has unified formerly special-purpose methods (such as
the generalized α scheme that proved highly successful for isogeometric analysis of Cahn-Hilliard [45] and
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Navier-Stokes-Korteweg [46]), thus allowing the authors to simplify their implementations for subsequent
work and facilitating easy comparison with alternatives such as IMEX or GL.

Addressing PDE-based models in which different components evolve on different temporal scales is in-
creasingly important [4]. Stiff components such as diffusion, fast reaction, and fast near-equilibrium waves
typically require a stable implicit integrator, whereas for nonstiff terms such as slow advection, explicit
integrators may be able to solve the problem with much less computational cost. IMEX methods offer the
possibility of the best of both worlds: larger timesteps not limited by diffusive/dispersive or stiff wave sta-
bility constraints, and less global (or better overlap of) synchronization cost than required by fully implicit
schemes. IMEX methods allow one to “dial-in” the amount of implicitness based on both the problem and
machine characteristics, as well as to reduce the number of costly nonstiff function evaluations in the nonlin-
ear solver and to avoid solving implicit systems with nonsmooth functions (like TVD limiters), which slow
the convergence of nonlinear solvers. We have added two families of IMEX methods to PETSc. Additive
Runge-Kutta methods use the stiff part g and nonstiff part f separately and can be nonlinearly implicit
on the stiff part. Rosenbrock-W methods are linearly implicit, evaluate g and f together (thus allowing
for more efficient/convenient specification), and support lagging the Jacobian of the stiff part across all the
stages of a step without affecting order of accuracy. New schemes can be registered by simply providing
the table of coefficients. PETSc includes many specific schemes from the literature as well as several new
optimal methods with specific stability and accuracy properties.

Most additive Runge-Kutta, Rosenbrock-W, and general linear schemes provide embedded error esti-
mates, which are used by our new adaptive error controllers. The controller logic is not dependent on the
family of method, and new implementations can be registered by users. In addition to error control, most
schemes provide dense output formulas that allow for high-order consistent interpolation within a step and
stable extrapolation, which provides an initial guess for the nonlinear solve in the next timestep.

4. Future Directions

The previous sections demonstrate recent advances in the PETSc library that enable application scientists
to investigate the design space of composable linear, nonlinear, and timestepping solvers. Separation of the
control logic of the algorithms from the computational kernels of the solvers is crucial to allow injecting new
hardware-specific computational kernels without having to rewrite the entire solver software library.

Future work on extreme-scale solvers will include attention to even more complex issues. Unlike many
classical algorithms, the increasing cost of memory access and communication requires that next-generation
libraries not treat their abstract building blocks as black boxes. Instead, it is increasingly important to have
extensible components that enable mixing levels of abstraction. Examples include matrix-free methods for
solving linear systems (trading the convenience of assembled matrices for lower memory requirements, per-
haps exploiting special discretization properties), various forms of linear or nonlinear elimination to reduce
communication costs [47, 48], nonlinear methods that do not rely on linear solves (potentially reducing com-
munication and memory bandwidth requirements), and advanced analysis techniques that use components
of a model instead of a complete full-accuracy model. A prototypical example of the latter is full-space PDE-
constrained optimization in which the PDE is satisfied exactly only when the optimization converges, thus
avoiding the need for high-accuracy PDE solves early in the iterative process (e.g., only a preconditioner for
the PDE is needed at each optimization iteration) [49–51]. Multilevel methods for uncertainty quantification
are another example, enabling accurate statistics to be obtained with a small number of realizations on the
finest level [52].

It is important for software maintainability and support of different analysis types that the implemen-
tations of these algorithmically intrusive algorithms minimize the software intrusiveness. Because many
problems of practical interest involve global dependence, it is essential for scalability to develop accurate
coarse representations of problems. Ideally, these coarse representations apply not just to a linear or alge-
braic subproblem but also to “outer” analysis problems. Note that these coarse representations need not be
restricted to the spatial domain; they may also apply to time, frequency, low rank structure, or combinations
of these.
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In the path to exascale, solver algorithms must become more sophisticated (built by composing a hierarchy
of already highly complex algorithms), not less sophisticated. Thus, enhancing and refactoring existing
scalable and flexible solver software libraries, such as PETSc, are the only way to achieve the long-term goal
of exascale solvers. Starting from scratch would entail unnecessarily reproducing twenty years of previous
work before the more sophisticated solvers could even be reasonably implemented. With the PETSc software,
we are already embarking on next-generation algorithms and data structures. Building on this foundation
of fundamental composable solver components will also facilitate a paradigm shift that raises the level of
abstraction from simulation of complex systems to the design and uncertainty quantification of these systems.
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R. Pawlowski, A. Peters, D. Reynolds, B. Riviere, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel,
B. Smith, X. Tang, C. Wilson, B. Wohlmuth, Multiphysics Simulations: Challenges and Opportunities, Tech. Rep.
ANL/MCS-TM-321, Argonne National Laboratory, Report of workshop sponsored by the Institute for Computing in
Science (ICiS), Park City, Utah, July 30 - August 6, 2011 (Dec 2011).

[5] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith,
H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.2, Argonne National Laboratory (2011).

[6] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, B. F. Smith, Composable linear solvers for multiphysics, Preprint
ANL/MCS-P2017-0112, Argonne National Laboratory, submitted to the 11th International Symposium on Parallel and
Distributed Computing (ISPDC 2012) (2012).

[7] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in object oriented numerical
software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software Tools in Scientific Computing,
Birkhauser Press, 1997, pp. 163–202.

[8] B. Smith, Encyclopedia of Parallel Computing, Springer, 2011, Ch. PETSc, the Portable, Extensible Toolkit for Scientific
computing.

[9] V. Minden, B. F. Smith, M. Knepley, Preliminary implementation of PETSc using GPUs, in: Proceedings of the 2010
Workshop of GPU Solutions to Multiscale Problems in Science and Engineering, 2010.

[10] S. Abhyankar, B. Smith, K. Stevens, Preliminary implementation of hybrid MPI/pthread programming model in PETSc,
Preprint ANL/MCS-P2011-0112, Argonne National Laboratory (2012).

[11] R. D. Falgout, J. E. Jones, U. M. Yang, Pursuing scalability for hypre’s conceptual interfaces, ACM Trans. Math. Softw.
31 (2005) 326–350.

[12] R. Falgout, hypre users manual, Tech. Rep. Revision 2.0.0, Lawrence Livermore National Laboratory (2006).
[13] J. W. Demmel, J. R. Gilbert, X. S. Li, SuperLU users’ guide, Tech. Rep. LBNL-44289, Lawrence Berkeley National

Laboratory (2003).
[14] M. A. Heroux, J. M. Willenbring, Trilinos users guide, Tech. Rep. SAND2003-2952, Sandia National Laboratories (2003).
[15] S. Jardin et al., M3D Web page, http://w3.pppl.gov/m3d.
[16] M. Adams, S. Ku, P. Worley, E. D’Azevedo, J. Cummings, C. Chang, Scaling to 150k cores: Recent algorithm and

performance engineering developments enabling XGC1 to run at scale, J. of Phys.: Conference Series 180.
[17] M. F. Adams, S. Ethier, N. Wichmann, Performance of particle and cell methods on highly concurrent computational

architectures, J. of Phys.: Conference Series 78.
[18] B. Aagaard, S. Kientz, M. G. Knepley, S. Somala, L. Strand, C. Williams, Pylith user manual version 1.6.1 (2011).
[19] R. F. Katz, M. G. Knepley, B. Smith, M. Spiegelman, E. Coon, Numerical simulation of geodynamic processes with the

Portable Extensible Toolkit for Scientific Computation, Phys. Earth Planet. In. 163 (2007) 52–68.
[20] D. A. May, L. Moresi, Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics,

Physics of the Earth and Planetary Interiors 171 (1-4) (2008) 33–47, Recent Advances in Computational Geodynamics:
Theory, Numerics and Applications. doi:DOI:10.1016/j.pepi.2008.07.036.

[21] R. F. Katz, M. Spiegelman, B. Holtzman, The dynamics of melt and shear localization in partially molten aggregates,
Nature 442 (2006) 676–679.

[22] R. Katz, M. Worster, The stability of ice-sheet grounding lines, Proc. Roy. Soc. A 466 (2010) 1597–1620. doi:10.1098/

rspa.2009.0434.
[23] T. Tautges et al., SISIPHUS: Scalable ice-sheet solvers and infrastructure for petascale, high-resolution, unstructured

simulations, http://trac.mcs.anl.gov/projects/sisiphus/wiki.
[24] J. Brown, B. Smith, A. Ahmadia, Achieving textbook multigrid efficiency for hydrostatic ice sheet flow, submitted to

SIAM Journal on Scientific Computing (2012).

7

http://w3.pppl.gov/m3d
http://dx.doi.org/DOI: 10.1016/j.pepi.2008.07.036
http://dx.doi.org/10.1098/rspa.2009.0434
http://dx.doi.org/10.1098/rspa.2009.0434
http://trac.mcs.anl.gov/projects/sisiphus/wiki


[25] P. Lichtner et al., PFLOTRAN project, http://ees.lanl.gov/pflotran/.
[26] A. Hakim, J. Cary, J. Candy, J. Cobb, R. Cohen, T. Epperly, D. Estep, S. Krasheninnikov, A. Malony, D. McCune,

L. McInnes, A. Pankin, S. B. J. Carlsson, M. Fahey, R. Groebner, S. Kruger, M. Miah, A. Pletzer, S. Shasharina,
S. Vadlamani, D. Wade-Stein, T. Rognlein, A. Morris, S. Shende, G. Hammett, K. Indareshkumar, A. Pigarov, H. Zhang,
Coupled whole device simulations of plasma transport in tokamaks with the FACETS code, in: Proceedings of SciDAC
2010 Conference, 2010.

[27] M. McCourt, T. D. Rognlien, L. C. McInnes, H. Zhang, Improving parallel scalability for edge plasma transport simulations
with neutral gas species, Preprint ANL/MCS-P2018-0112, Argonne National Laboratory, submitted to the Proceedings
of the Twenty Second International Conference on Numerical Simulations of Plasmas, Sept. 7-9, 2011, Long Branch, NJ
(2012).

[28] L. Wang, J. Lee, M. Anitesu, A. E. Azab, L. C. McInnes, T. Munson, B. Smith, A differential variational inequality
approach for the simulation of heterogeneous materials, in: Proceedings of SciDAC 2011 Conference, 2011.

[29] S. Abhyankar, Development of an implicitly coupled electromechanical and electromagnetic transients simulator for power
systems, Ph.D. thesis, Illinois Institute of Technology (2011).

[30] S. Abhyankar, B. Smith, H. Zhang, A. Flueck, Using PETSc to develop scalable applications for next-generation power
grid, in: Proceedings of the 1st International Workshop on High Performance Computing, Networking and Analytics for
the Power Grid, ACM, 2011.

[31] Y. Saad, M. Sosonkina, pARMS: A package for the parallel iterative solution of general large sparse linear systems user’s
guide, Tech. rep., Minnesota Supercomputer Institute, University of Minnesota, http://www-users.cs.umn.edu/~saad/

software/pARMS (2004).
[32] D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches and applications, J. Comp.

Phys. 193 (2004) 357–397.
[33] B. Smith, H. Zhang, Sparse triangular solves for ILU revisited: Data layout crucial to better performance, International

Journal of High Performance Computing Applications 25 (4) (2010) 386–391.
[34] M. A. Smith, C. Rabiti, D. Kaushik, B. Smith, W. S. Yang, G. Palmiotti, Fast reactor core simulations using the UNIC

code, in: Proceedings of the International Conference on the Physics of Reactors, Nuclear Power: A Sustainable Resource,
2008.

[35] D. Kaushik, M. Smith, A. Wollaber, B. Smith, A. Siegel, W. S. Yang, Enabling high fidelity neutron transport simulations
on petascale architectures, SC’09 Gordon Bell Prize Finalist (2009).

[36] J. Nocedal, S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[37] A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, C. Woodward, SUNDIALS: suite of nonlinear and

differential/algebraic equation solvers, ACM Transactions on Mathematical Software 31 (3) (2005) 363–396.
[38] P. Hovland, B. Norris, B. Smith, Making automatic differentiation truly automatic: Coupling PETSc with ADIC, Future

Generation Computer Systems 21 (8) (2005) 1426–1438.
[39] P. M. Carrica, J. Huang, R. Noack, D. Kaushik, B. Smith, F. Stern, Toward large-scale computations of ship motions with

dynamic overset curvilinear grids, in: Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008.
[40] P. M. Carrica, J. Huang, R. Noack, D. Kaushik, B. Smith, F. Stern, Large-scale DES computations of the forward speed

diffraction and pitch and heave problems for a surface combatant, Computers and Fluids 39 (7) (2010) 1095–1111.
[41] R. T. Mills, V. Sripathi, G. Mahinthakumar, G. Hammond, P. C. Lichtner, B. F. Smith, Engineering PFLOTRAN for

scalable performance on Cray XT and IBM BlueGene architectures, in: Proceedings of SciDAC 2010 Annual Meeting,
2010.

[42] P. Brune, M. Knepley, B. Smith, X. Tu, Composing scalable nonlinear solvers, Preprint ANL/MCS-P2010-0112, Argonne
National Laboratory (2012).
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